

CT und ZV:

- Therapieplanung erfolgt mit CT, 3 mm Schichtabstand
- Scanbereich: caudale Mittlere Schädel bis etwa 7. Brustwirbel
- Lagerung auf dem Rücken mit Knierolle, Arme längs des Körpers, Halbkörpermaske mit CT Marker Maske links
- Eingabe durch die Physik: Risikoorgane: Auge re. + Auge li., Myelon, Myelon+5mm, Myelon+8mm
- Eingabe durch den Arzt: ZV; Bei Schonung: Parotis, Submandibularis; Bei langen ZV: Hirnstamm, Chiasma
- Eingabe ZV (A) Beispiel: TU(Nas)+LAG(cer bds), (B) LAG(Sup re) und (C) LAG(Sup li) getrennt oder (B) LAG (Supra) zusammen. Der Anschluss sollte wenn möglich in Höhe des Supra-Clavikular-Gelenkes sein.

Bestrahlungskonzept Beispiel:

Serie	zv	Dosierung
I	TU(Oro)+LAG(cer bds)	Dosis/Fraktion = 2 Gy, bis 50 Gy
Ш	TU(Oro)Bo1	Dosis/Fraktion = 2 Gy bis 60 Gy
IV	TU(Oro)Bo2	Dosis/Fraktion = 2 Gy bis 70 Gy

Technik:

- 1. Das plan template HNO VMAT verwenden
- 2. Energie: 6 MV, 1 Arc mit Kollimatorwinkel 15°
- 3. Das Isozentrum liegt in ZV Mitte am ventralen Wirbelkörperrand.
- 4. Ref. Pkt auf CT Marker, Maske links
- 5. Das Maximum liegt nicht höher als 110% (in schwierigen Fällen 112%). Die 95% Isodose umschließt das ZV (wenn nicht möglich die 90% Isodose).). Es sollte möglichst PTV V_{95%} >90% erreicht werden.
- 6. Je nach ZV Lage und Komplexität die angegebenen Optimierungsparameter anpassen. Gegebenenfalls einen zweiten Arc einfügen (s. Optimierungseinstellungen).
- 7. Falls ZV zu lang ist, Kollimatorwinkel auf 30°,15° oder 0° ändern.
- 8. Zwischen getrennt eingezeichneten Lymphabflusswegen LAG(sup re) und LAG (sup li) wird zur Optimierung eine Hilfskontur mit einer ROI Margin zu den ZV von etwa 5 mm eingezeichnet.

Risikoorgane Dosisgrenze:

Organ	Toleranz Dosis
Augen Linse re/li	D _{max} < 3 Gy (bei > 5 Gy Absprache Arzt)
Myelon	D _{max} < 42 Gy
Myelon+5mm	D _{max} < 50 Gy
Parotis	D _{mean} < 25 Gy (beidseitige Schonung)
	D _{mean} < 20 Gy (einseitige Schonung)
Glandula Submandibularis	D _{mean} < 25 Gy
Hirnstamm	D _{max} < 54 Gy
Chiasma	D _{max} < 54 Gy

Optimierungseinstellungen (Settings im Optimizer):

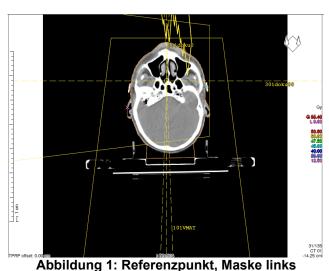
- Optimization variables
 - VMAT for all
- General
 - o VMAT after 20 iterations
 - o Final Dose Algorithm: Collapsed Cone (GPU)
 - o 3 mm Dosisraster (im Planmanager einstellen)
 - Tumor Overlap fraction eingeschaltet (100%)
 - o Max number of iterations 60
 - o Optimality tolerance 0.01
 - o Number of fractions: je nach Serie
- VMAT beam settings
 - o Constrain leaf motion: Yes 0.5 cm/deg

Beam name	Start angle (deg)	Arc length (deg)	Rotation direction	Gantry spacing (deg)	Max delivery time(s)	Numer of Arcs
101VMAT	178	356	Counter clockwise	4	120	Single arc

Falls 2 Arcs benutzt werden, im Planmanager ein zweites Feld 201VMAT erzeugen und folgende Einstellungen benutzen:

Beam name	Start angle	Arc length	Rotation direction	Gantry spacing	Max delivery time(s)	Numer Arcs	of
101VMAT	178	356	Counter clockwise	4	120	Dual Arc	

Geeignete Start-Optimierungsparameter für Serie Al:


	Objective	Dose level/ Gy	Weight
ZV z.B.	Maximum Dose	54	300
Tu(Oro)+LAG), LAG(sup	Uniform Dose	50	200
re), LAG(sup li)	Minimum Dose volume	47.5 to 95% volume	200
	Minimum Dose volume	45 to 98% volume	300
Myelon	Maximum Dose	34	200
Myelon+5mm	Maximum Dose	36	300
Myelon+8mm	Maximum Dose	40	100
Hirnstamm	Maximum Dose	44	50
Chiasma	Maximum Dose	44	50
Hilfskontur	Maximum Dose	38	25
Parotis li	Maximum Average Dose	20	50
Parotis re	Maximum Average Dose	20	50
Gl. Submandibularis li	Maximum Average Dose	25	50
Gl. Submandibularis re	Maximum Average Dose	25	50
Auge li	Maximum Dose	10	5
Auge re	Maximum Dose	10	5
External	Surrounding dose fall off	40/25 in 1.8 cm	25
	Surrounding dose fall off	50/40 in 0.8 cm	75
	Maximum Dose	54	500

Für jeden Patienten müssen die Parameter individuell angepasst werden. Es bietet sich an dazu die Fluenzoptimierung bis kurz vor den Übergang in die Aperturoptimierung laufen zu lassen und dann auf Stop zu klicken. Die Objectives und Constraints können nun mit Hilfe des vorläufigen DVHs eingestellt werden um Risikoorgane bestmöglich zu schonen und eine gute Abdeckung des Zielvolumens zu gewährleisten.

Dokumentation:

- 1. Screenshot von TOPO mit Ref. Punkt und Einblendung des Pat. Namen
- 2. Druck von Treatment Printout
- 3. Druck aller Beam's Eye Views
- 4. Druck von transversaler, sagittaler und koronaler CT Schicht mit Isodosen durch das Isozentrum oder andere repräsentative CT Schichten, falls das Isozentrum außerhalb des ZV liegen sollte
- 5. Druck von DVH (kumulativ), In DVH Tabelle: V₉₅ für PTV dokumentieren, Für Myelon und Myelon +5mm die maximale Dosis auf 0.03 cm³ Volumen dokumentieren
- **6.** Dosisaddition in höheren Serien in Summen-DVH ausdrucken, In DVH Tabelle: Für Myelon und Myelon +5mm die maximale Dosis auf 0.03 cm³ Volumen dokumentieren

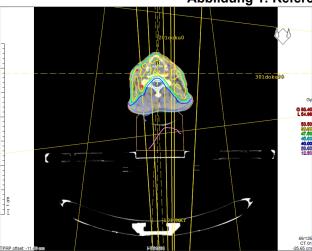
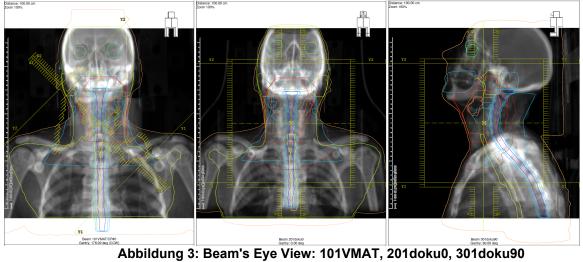



Abbildung 2: Zentralschichten, Isozentrum in ZV Mitte am ventralen Wirbelkörperrand, 95% Isodose umschließt ZV

